
Are you in the top 1% of brawl stars players?

Dominik Moser, Ole Petersen

Abstract We simulate brawl stars 3v3 to find out how good a certain amount of tro-
phies is compared to the other players. Our results from a billion games show that you
need around 920 trophies on a brawler to be in the top 1% of players. The main input to
the simulation is the trophy update rule, which is publicly available. We also find that
the percentile of players with a certain amount of trophies is surprisingly independent
from other parameters such as the number of players or the effect of the player’s skill
on the outcome of the game.

Have you ever wondered how good you are at the game Brawl Stars? Are you in the top 1% of
players? In this post, we will find out by simulating the game with a million players using Julia.

Our model
Brawl stars is a multiplayer game. We will analyze the 3v3 game mode where two teams of three
players each fight against each other. We are primarily interested in top players; therefore, we will
assume that all brawlers are maxed out. The strength of a player is assumed to be soley determined
by a single number, the skill level, which is constant over all games. Players have a trophy count
for the brawler they play, which is changing over the rounds. We assume players are matched
based on the trophy count of the brawler they play.

We simplistically assume that the game is played in discrete global rounds. For each round, each
player joins with a probability of activity_level, which is individual for each player. If a player
has an activity level of 1, they play in every round.

This leaves us with the following model:

using Distributions
using Random

mutable struct Player
 trophies::Int
 skill::Float64
 activity::Float64
 streak::Int
 Player(skill_dist=Normal(0, 3),activity_dist=Uniform(0.2, 1)) = new(0,

1

https://supercell.com/en/games/brawlstars/
https://julialang.org/

rand(skill_dist), rand(activity_dist),0)
end

Here, we assume that the skill level of the players is distributed as 𝒩(𝜇 = 0, 𝜎 = 3) and the ac-
tivity level is distributed as 𝒰(0.2, 1).

Consequently, the players that are active in a round are drawn as follows:

function sample_players_in_round(players::Vector{Player})
 mask = [rand(Bernoulli(p.activity)) for p in players]
 return players[mask]
end

Now, let us consider the outcome of a game. We assume that the strength of a team is the average
skill of its players. If two teams with average skills 𝑚1 and 𝑚2 play against each other, we model
the probability of team 1 winning as

𝑃(team 1 wins) =
1

1 + exp(𝑚2 − 𝑚1)
.

This is implemented as follows:

function play(g1::AbstractVector{Player}, g2::AbstractVector{Player})
 m1 = mean([p.skill for p in g1])
 m2 = mean([p.skill for p in g2])
 p_team_1_wins = 1 / (1 + exp(m2 - m1))
 return rand(Bernoulli(p_team_1_wins))
end

How are the players rewarded or penalized after a game? This data is publicly accesible here and
can be verified within the game.

using MarkdownTables
using DataFrames
trophy_changes = DataFrame(
 "min trophies" => [0, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200],
 "max trophies" => [49, 99, 199, 299, 399, 499, 599, 699, 799, 899, 999, 1099,
1199, Inf],
 "win trophy bonus" => [8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3],
 "loss trophy penalty" => [0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11,
-12, -12]
)
markdown_table(trophy_changes)

2

https://brawlstars.fandom.com/wiki/Trophies

min trophies max trophies win trophy bonus loss trophy penalty

0 49.0 8 0

50 99.0 8 −1

100 199.0 8 −2

200 299.0 8 −3

300 399.0 8 −4

400 499.0 8 −5

500 599.0 8 −6

600 699.0 8 −7

700 799.0 8 −8

800 899.0 7 −9

900 999.0 6 −10

1000 1099.0 5 −11

1100 1199.0 4 −12

1200 Inf 3 −12

So now, let us write a function that returns the new trophy count of the players after a game.
Since this is run billions of times, we pre-compute the result in bins of 50 trophies.

Further, there is a concept called win streaks. If a player wins 2 games in a row, they get one extra
trophy, for 3 wins in a row, they get 2 extra trophies, up to 5 extra posts for 6 wins in a row. Let
us implement this:

num_bins = 1200 ÷ 50 + 1
to_bin(trophies::Int) = 1 + min(trophies, 1200) ÷ 50
win_trophies_by_bin = zeros(Int, num_bins)
loss_trophies_by_bin = zeros(Int, num_bins)
for trophy in 0:50:1200
 df_row = first(filter(row -> row[1] <= trophy <= row[2],
eachrow(trophy_changes)))
 win_trophies_by_bin[to_bin(trophy)] = df_row["win trophy bonus"]
 loss_trophies_by_bin[to_bin(trophy)] = df_row["loss trophy penalty"]
end
function get_trophy_change(trophies::Int, win::Bool, streak_length::Int=0)
 trophy_bin = to_bin(trophies)
 return clamp(streak_length - 1, 0, 5) + (win ?
win_trophies_by_bin[trophy_bin] : loss_trophies_by_bin[trophy_bin])
end
@assert all(get_trophy_change.(trophy_changes[:, "min trophies"], true) .==
trophy_changes[:, "win trophy bonus"])

3

@assert all(get_trophy_change.(trophy_changes[:, "min trophies"], false) .==
trophy_changes[:, "loss trophy penalty"])
println("Trophy change at 543 trophies after a win: ", get_trophy_change(543,
true))
println("Trophy change at 543 trophies after a loss: ", get_trophy_change(543,
false))

Trophy change at 543 trophies after a win: 8
Trophy change at 543 trophies after a loss: -6

This code may seem complicated due to the precomputation. A more simple version would be:

min_trophies = trophy_changes[:,"min trophies"]
max_trophies = trophy_changes[:,"max trophies"]
win_trophy_bonus = trophy_changes[:,"win trophy bonus"]
loss_trophy_penalty = trophy_changes[:,"loss trophy penalty"]
function get_trophy_change(trophies::Int, win::Bool, streak_length::Int)
 for i in 1:length(min_trophies)
 if trophies >= min_trophies[i] && trophies <= max_trophies[i]
 if win
 return clamp(streak_length - 1, 0, 5) + win_trophy_bonus[i]
 else
 return clamp(streak_length - 1, 0, 5) + loss_trophy_penalty[i]
 end
 end
 end
end

Next, let us implement a round of the game. We first get the active players in this round and sort
them by their trophy cound. This allows us to pair the players with similar trophy levels: We split
the list of active players in chunks of size 6=2*team_size. Since the list is sorted, each group of
6 has a similar trophy count. We then permute the players in the group randomly and assign the
first three to group 1 and the last three to group 2. The trophies of the players are then updated
accordingly. Each group is executed in parallel using Threads.@threads:

function step!(players::Vector{Player}, team_size::Int=3)
 players_in_round = sample_players_in_round(players)
 sorted_players = sort(players_in_round, by=p -> p.trophies)
 permutation = randperm(2 * team_size)
 Threads.@threads for i in 1:(2*team_size):
(length(sorted_players)-2*team_size)
 @views begin
 shuffled_players = sorted_players[i:i+2*team_size-1][permutation]
 team1 = shuffled_players[1:team_size]
 team2 = shuffled_players[team_size+1:end]

4

 @assert length(team1) == length(team2) == team_size
 team1_wins = play(team1, team2)
 for p in team1
 p.streak += 1
 p.trophies += get_trophy_change(p.trophies, team1_wins, p.streak)
 end
 for p in team2
 p.streak = 0
 p.trophies += get_trophy_change(p.trophies, !team1_wins,p.streak)
 end
 end
 end
end

Now, let us simulate a few rounds of the game:

num_players = 1000000
num_rounds = 1000
players = [Player() for i in 1:num_players]
for round in 1:num_rounds
 step!(players)
end

First, we would like to find out the correlation between the skill level and the trophy count. Fig-
ure 1 shows the result of a simulation with 1 million players. It is visible that a higher skill level
is clearly correlated with a higher trophy count.

using Plots
players_to_plot = players[1:1000]
scatter([p.skill for p in players_to_plot], [p.trophies for p in
players_to_plot], label="Skill vs Trophies", xlabel="Skill", ylabel="Trophies",
title="Skill vs Trophies",alpha=0.3, legend=false)

5

Figure 1: Skill level vs trophies for the first 1000 players

Next, let us find out what we are interested in: the top 1% of players. To do so, we sort the players
by their trophy count and plot how many players have more than a certain number of trophies
in Figure 2.

trophies=[p.trophies for p in players]
trophies=sort(trophies)
percent_better=1.0 .- (1:num_players) ./num_players
plot all but the last 50 in steps of 100 and the last 50 players
to_plot=vcat(1:100:(num_players-50),(num_players-50):(num_players-1))
plot(trophies[to_plot], percent_better[to_plot], label="Trophies",
xlabel="Trophies", ylabel="Percentile", yscale=:log10,
xlims=(600,maximum(trophies)),yminorgrid=true, legend=false)

6

Figure 2: Fraction of players with at least a certain number of trophies

In the following table you can see that you need around 920 trophies to be in the top 1% of players:

percentiles_to_list=[10,5,2,1,0.1,0.01,0.001]
indices=[ceil(Int,(1-percentile/100)*num_players) for percentile in
percentiles_to_list]
trophies_at_percentiles=trophies[indices]
df=DataFrame("Percentile
(%)"=>percentiles_to_list,"Trophies"=>trophies_at_percentiles)
markdown_table(df)

7

Percentile (%) Trophies

10.0 860

5.0 883

2.0 906

1.0 921

0.1 967

0.01 1004

0.001 1043

Next, let us test how this curve depends on the number of players. Figure 3 shows an interesting
result: If there are more players in the game, it is easier to be in the top few players of the game.
For the bulk of the players, the number of players does not really matter for the relative position.
Based on this, brawl stars has around a million daily active players, so the initial plot is the most
relevant.

p=plot(xlabel="Trophies", ylabel="Percentile", yscale=:log10, yminorgrid=true)
num_rounds=1000
for num_players in [100,1000, 10000, 100000, 1000000]
 players = [Player() for i in 1:num_players]
 for round in 1:num_rounds
 step!(players)
 end
 trophies=[p.trophies for p in players]
 trophies=sort(trophies)
 percent_better=1.0 .- (1:num_players) ./num_players
 num_points_to_plot=10000
 step=ceil(Int,num_players/num_points_to_plot)
 # plot all but the last 50 in steps of step and the last 50 players
 to_plot=vcat(1:step:(num_players-50),(num_players-50):(num_players-1))
 plot!(p,trophies[to_plot], percent_better[to_plot], label="$num_players
players", xlims=(600,maximum(trophies)))
end
display(p)

8

https://activeplayer.io/brawl-stars/

Figure 3: Fraction of players with at least a certain number of trophies for different numbers of
players and a skill standard deviation of 3 after 1000 rounds

Next, let us find out how the curve depends on the standard deviations of the skill level. This
model parameter is crucial since the formula for the probability of winning a game depends on
the average skill level of the team members:

𝑃(team 1 wins) =
1

1 + exp(𝑚2 − 𝑚1)
.

The standard deviation controls how likely the best players win against the worst players. Let us
see how likely the top 5% of players win against the bottom 5% of players for different standard
deviations, as depicted in Figure 4.

The top 5% of players have a skill of 2 standard deviations above the mean,
while the bottom 5% have a skill of 2 standard deviations below the mean
p_win(std) = 1 / (1 + exp(-2*std+(-2*std)))
stds=0:0.1:3
plot(stds, p_win.(stds), label="Win probability of top 5% vs bottom 5%",
xlabel="Skill standard deviation", ylabel="Win probability", title="Win
probability of top 5% vs bottom 5% of players", legend=false)

9

Figure 4: Win probability of the top player 5% of players vs the bottom 5% of players for different
skill standard deviations

Running the simulation with different standard deviations shows that its influence is surprisingly
minimal, as shown in Figure 5. The curves are almost identical except for very high trophy counts.
This means our result is robust against changes in this somehow arbitrary parameter.

p=plot(xlabel="Trophies", ylabel="Percentile", yscale=:log10, yminorgrid=true)
num_players=10000
num_rounds=1000
for std in [0.05, 0.1, 0.2, 0.5, 1, 2,4]
 players = [Player(Normal(0,std)) for i in 1:num_players]
 for round in 1:num_rounds
 step!(players)
 end
 trophies=[p.trophies for p in players]
 trophies=sort(trophies)
 percent_better=1.0 .- (1:num_players) ./num_players
 # plot all but the last 50 in steps of 50 and the last 50 players
 to_plot=vcat(1:50:(num_players-50),(num_players-50):(num_players-1))
 plot!(p,trophies[to_plot], percent_better[to_plot], label="skill std: $std",
xlims=(600,maximum(trophies)))

10

end
display(p)

Figure 5: Fraction of players with at least a certain number of trophies for different skill standard
deviations and 10000 players after 1000 rounds.

Finally, we find in Figure 6 that playing more actively does not influence the trophy count signif-
icantly.

players_to_plot = players[1:2000]
scatter([p.activity for p in players_to_plot], [p.trophies for p
in players_to_plot], label="Activity vs Trophies", xlabel="Activity",
ylabel="Trophies", title="Activity vs Trophies", alpha=0.3)

11

Figure 6: Activity level vs trophies for the first 20000 players

To conclude, we found that you need 864 trophies to be in the top 1% of players in Brawl Stars.
This result is robust against changes in the standard deviation of the skill level and the activity
level of the players. We hope you enjoyed this post and learned something new about Brawl Stars!
And remember, it is just a game; playing too much does not help in our simulation.

As a bonus, we animated the trophy count of the players over the games:

skill_vs_trophies.mp4

using Plots
num_players = 10000
num_rounds = 2000
players = [Player() for i in 1:num_players]
every=10
global lower_bound=0.0
global upper_bound=500.0
a=@animate for round in 1:every:num_rounds
 for i in 1:every
 step!(players)
 end
 players_to_plot = players[1:1000]
 min_trophies=minimum([p.trophies for p in players_to_plot])

12

skill_vs_trophies.mp4

 max_trophies=maximum([p.trophies for p in players_to_plot])
 if round < 1000
 global lower_bound += 0.05*(min_trophies-30-lower_bound)
 global upper_bound += 0.1*(max_trophies+200-upper_bound)
 end
 scatter([p.skill for p in players_to_plot], [p.trophies
for p in players_to_plot], xlabel="Skill", ylabel="Trophies",
title="Skill vs Trophies (round $round)",alpha=0.3, legend=false,
ylims=(lower_bound,upper_bound),yminorgrid=true)
end
gif(a, "skill_vs_trophies.gif", fps = 20)
println("Done rendering")
run(`ffmpeg -f gif -i skill_vs_trophies.gif -y -pix_fmt yuv420p
skill_vs_trophies.mp4`)

13

	Our model

